D63.00002. Improved Accuracy Tight Binding Model for Finite Temperature Electronic Structure Dynamics in Methyl Ammonium Lead Iodide (MAPbI3)

Presented by: David Abramovitch


Abstract

Halide perovskites are promising photovoltaic and optoelectronic materials. However, computing electronic properties and dynamics at finite temperature is challenging due to nonlinear lattice dynamics and prohibitive computational costs for ab initio methods. Tight binding models decrease computational costs, but current models lack the ability to accurately model instantaneous atom displacement and reduced symmetry at finite temperature. We present a parameterized tight binding model for MAPbI3 capable of predicting instantaneous electronic structures for large systems based on atomic positions extracted from classical molecular dynamics. Our tight binding Hamiltonian predicts instantaneous atomic orbital onsite energies and hopping parameters accurate to 0.1 to 0.01 eV compared to DFT across the orthorhombic, tetragonal, and cubic phases, including effects of temperature, reduced symmetry, and spin orbit coupling. This model allows for efficient calculation of instantaneous and dynamical electronic structure at the length and time scales required to address coupled electronic and ionic dynamics, as required for predicting temperature dependence of carrier mass, band structure, free carrier scattering, and polaron transport and recombination.

Authors

  • David Abramovitch
  • Liang Tan


Comments

Powered by Q-CTRL

© 2020 Virtual APS March Meeting. All rights reserved.